axhal/platform/x86_pc/
uart16550.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
//! Uart 16550.

use kspin::SpinNoIrq;
use x86_64::instructions::port::{Port, PortReadOnly, PortWriteOnly};

const UART_CLOCK_FACTOR: usize = 16;
const OSC_FREQ: usize = 1_843_200;

static COM1: SpinNoIrq<Uart16550> = SpinNoIrq::new(Uart16550::new(0x3f8));

bitflags::bitflags! {
    /// Line status flags
    struct LineStsFlags: u8 {
        const INPUT_FULL = 1;
        // 1 to 4 unknown
        const OUTPUT_EMPTY = 1 << 5;
        // 6 and 7 unknown
    }
}

struct Uart16550 {
    data: Port<u8>,
    int_en: PortWriteOnly<u8>,
    fifo_ctrl: PortWriteOnly<u8>,
    line_ctrl: PortWriteOnly<u8>,
    modem_ctrl: PortWriteOnly<u8>,
    line_sts: PortReadOnly<u8>,
}

impl Uart16550 {
    const fn new(port: u16) -> Self {
        Self {
            data: Port::new(port),
            int_en: PortWriteOnly::new(port + 1),
            fifo_ctrl: PortWriteOnly::new(port + 2),
            line_ctrl: PortWriteOnly::new(port + 3),
            modem_ctrl: PortWriteOnly::new(port + 4),
            line_sts: PortReadOnly::new(port + 5),
        }
    }

    fn init(&mut self, baud_rate: usize) {
        unsafe {
            // Disable interrupts
            self.int_en.write(0x00);

            // Enable DLAB
            self.line_ctrl.write(0x80);

            // Set maximum speed according the input baud rate by configuring DLL and DLM
            let divisor = OSC_FREQ / (baud_rate * UART_CLOCK_FACTOR);
            self.data.write((divisor & 0xff) as u8);
            self.int_en.write((divisor >> 8) as u8);

            // Disable DLAB and set data word length to 8 bits
            self.line_ctrl.write(0x03);

            // Enable FIFO, clear TX/RX queues and
            // set interrupt watermark at 14 bytes
            self.fifo_ctrl.write(0xC7);

            // Mark data terminal ready, signal request to send
            // and enable auxilliary output #2 (used as interrupt line for CPU)
            self.modem_ctrl.write(0x0B);
        }
    }

    fn line_sts(&mut self) -> LineStsFlags {
        unsafe { LineStsFlags::from_bits_truncate(self.line_sts.read()) }
    }

    fn putchar(&mut self, c: u8) {
        while !self.line_sts().contains(LineStsFlags::OUTPUT_EMPTY) {}
        unsafe { self.data.write(c) };
    }

    fn getchar(&mut self) -> Option<u8> {
        if self.line_sts().contains(LineStsFlags::INPUT_FULL) {
            unsafe { Some(self.data.read()) }
        } else {
            None
        }
    }
}

/// Writes a byte to the console.
fn putchar(c: u8) {
    let mut uart = COM1.lock();
    match c {
        b'\n' => {
            uart.putchar(b'\r');
            uart.putchar(b'\n');
        }
        c => uart.putchar(c),
    }
}

/// Reads a byte from the console, or returns [`None`] if no input is available.
fn getchar() -> Option<u8> {
    COM1.lock().getchar()
}

/// Write a slice of bytes to the console.
pub fn write_bytes(bytes: &[u8]) {
    for c in bytes {
        putchar(*c);
    }
}

/// Reads bytes from the console into the given mutable slice.
/// Returns the number of bytes read.
pub fn read_bytes(bytes: &mut [u8]) -> usize {
    let mut read_len = 0;
    while read_len < bytes.len() {
        if let Some(c) = getchar() {
            bytes[read_len] = c;
        } else {
            break;
        }
        read_len += 1;
    }
    read_len
}

pub(super) fn init() {
    COM1.lock().init(115200);
}