axsync/
mutex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//! A naïve sleeping mutex.

use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::sync::atomic::{AtomicU64, Ordering};

use axtask::{WaitQueue, current};

/// A mutual exclusion primitive useful for protecting shared data, similar to
/// [`std::sync::Mutex`](https://doc.rust-lang.org/std/sync/struct.Mutex.html).
///
/// When the mutex is locked, the current task will block and be put into the
/// wait queue. When the mutex is unlocked, all tasks waiting on the queue
/// will be woken up.
pub struct Mutex<T: ?Sized> {
    wq: WaitQueue,
    owner_id: AtomicU64,
    data: UnsafeCell<T>,
}

/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct MutexGuard<'a, T: ?Sized + 'a> {
    lock: &'a Mutex<T>,
    data: *mut T,
}

// Same unsafe impls as `std::sync::Mutex`
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}

impl<T> Mutex<T> {
    /// Creates a new [`Mutex`] wrapping the supplied data.
    #[inline(always)]
    pub const fn new(data: T) -> Self {
        Self {
            wq: WaitQueue::new(),
            owner_id: AtomicU64::new(0),
            data: UnsafeCell::new(data),
        }
    }

    /// Consumes this [`Mutex`] and unwraps the underlying data.
    #[inline(always)]
    pub fn into_inner(self) -> T {
        // We know statically that there are no outstanding references to
        // `self` so there's no need to lock.
        let Mutex { data, .. } = self;
        data.into_inner()
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Returns `true` if the lock is currently held.
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    #[inline(always)]
    pub fn is_locked(&self) -> bool {
        self.owner_id.load(Ordering::Relaxed) != 0
    }

    /// Locks the [`Mutex`] and returns a guard that permits access to the inner data.
    ///
    /// The returned value may be dereferenced for data access
    /// and the lock will be dropped when the guard falls out of scope.
    pub fn lock(&self) -> MutexGuard<T> {
        let current_id = current().id().as_u64();
        loop {
            // Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
            // when called in a loop.
            match self.owner_id.compare_exchange_weak(
                0,
                current_id,
                Ordering::Acquire,
                Ordering::Relaxed,
            ) {
                Ok(_) => break,
                Err(owner_id) => {
                    assert_ne!(
                        owner_id,
                        current_id,
                        "{} tried to acquire mutex it already owns.",
                        current().id_name()
                    );
                    // Wait until the lock looks unlocked before retrying
                    self.wq.wait_until(|| !self.is_locked());
                }
            }
        }
        MutexGuard {
            lock: self,
            data: unsafe { &mut *self.data.get() },
        }
    }

    /// Try to lock this [`Mutex`], returning a lock guard if successful.
    #[inline(always)]
    pub fn try_lock(&self) -> Option<MutexGuard<T>> {
        let current_id = current().id().as_u64();
        // The reason for using a strong compare_exchange is explained here:
        // https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
        if self
            .owner_id
            .compare_exchange(0, current_id, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
        {
            Some(MutexGuard {
                lock: self,
                data: unsafe { &mut *self.data.get() },
            })
        } else {
            None
        }
    }

    /// Force unlock the [`Mutex`].
    ///
    /// # Safety
    ///
    /// This is *extremely* unsafe if the lock is not held by the current
    /// thread. However, this can be useful in some instances for exposing
    /// the lock to FFI that doesn’t know how to deal with RAII.
    pub unsafe fn force_unlock(&self) {
        let owner_id = self.owner_id.swap(0, Ordering::Release);
        assert_eq!(
            owner_id,
            current().id().as_u64(),
            "{} tried to release mutex it doesn't own",
            current().id_name()
        );
        self.wq.notify_one(true);
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in
    /// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
    /// such, this is a 'zero-cost' operation.
    #[inline(always)]
    pub fn get_mut(&mut self) -> &mut T {
        // We know statically that there are no other references to `self`, so
        // there's no need to lock the inner mutex.
        unsafe { &mut *self.data.get() }
    }
}

impl<T: Default> Default for Mutex<T> {
    #[inline(always)]
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.try_lock() {
            Some(guard) => write!(f, "Mutex {{ data: ")
                .and_then(|()| (*guard).fmt(f))
                .and_then(|()| write!(f, "}}")),
            None => write!(f, "Mutex {{ <locked> }}"),
        }
    }
}

impl<T: ?Sized> Deref for MutexGuard<'_, T> {
    type Target = T;
    #[inline(always)]
    fn deref(&self) -> &T {
        // We know statically that only we are referencing data
        unsafe { &*self.data }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut T {
        // We know statically that only we are referencing data
        unsafe { &mut *self.data }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized> Drop for MutexGuard<'_, T> {
    /// The dropping of the [`MutexGuard`] will release the lock it was created from.
    fn drop(&mut self) {
        unsafe { self.lock.force_unlock() }
    }
}

#[cfg(test)]
mod tests {
    use crate::Mutex;
    use axtask as thread;
    use std::sync::Once;

    static INIT: Once = Once::new();

    fn may_interrupt() {
        // simulate interrupts
        if rand::random::<u32>() % 3 == 0 {
            thread::yield_now();
        }
    }

    #[test]
    fn lots_and_lots() {
        INIT.call_once(thread::init_scheduler);

        const NUM_TASKS: u32 = 10;
        const NUM_ITERS: u32 = 10_000;
        static M: Mutex<u32> = Mutex::new(0);

        fn inc(delta: u32) {
            for _ in 0..NUM_ITERS {
                let mut val = M.lock();
                *val += delta;
                may_interrupt();
                drop(val);
                may_interrupt();
            }
        }

        for _ in 0..NUM_TASKS {
            thread::spawn(|| inc(1));
            thread::spawn(|| inc(2));
        }

        println!("spawn OK");
        loop {
            let val = M.lock();
            if *val == NUM_ITERS * NUM_TASKS * 3 {
                break;
            }
            may_interrupt();
            drop(val);
            may_interrupt();
        }

        assert_eq!(*M.lock(), NUM_ITERS * NUM_TASKS * 3);
        println!("Mutex test OK");
    }
}