use alloc::{boxed::Box, string::String, sync::Arc};
use core::ops::Deref;
use core::sync::atomic::{AtomicBool, AtomicI32, AtomicU64, AtomicU8, Ordering};
use core::{alloc::Layout, cell::UnsafeCell, fmt, ptr::NonNull};
#[cfg(feature = "preempt")]
use core::sync::atomic::AtomicUsize;
use kspin::SpinNoIrq;
use memory_addr::{align_up_4k, VirtAddr};
use axhal::arch::TaskContext;
#[cfg(feature = "tls")]
use axhal::tls::TlsArea;
use crate::task_ext::AxTaskExt;
use crate::{AxCpuMask, AxTask, AxTaskRef, WaitQueue};
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub struct TaskId(u64);
#[repr(u8)]
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub(crate) enum TaskState {
Running = 1,
Ready = 2,
Blocked = 3,
Exited = 4,
}
pub struct TaskInner {
id: TaskId,
name: String,
is_idle: bool,
is_init: bool,
entry: Option<*mut dyn FnOnce()>,
state: AtomicU8,
cpumask: SpinNoIrq<AxCpuMask>,
in_wait_queue: AtomicBool,
#[cfg(feature = "smp")]
on_cpu: AtomicBool,
#[cfg(feature = "irq")]
timer_ticket_id: AtomicU64,
#[cfg(feature = "preempt")]
need_resched: AtomicBool,
#[cfg(feature = "preempt")]
preempt_disable_count: AtomicUsize,
exit_code: AtomicI32,
wait_for_exit: WaitQueue,
kstack: Option<TaskStack>,
ctx: UnsafeCell<TaskContext>,
task_ext: AxTaskExt,
#[cfg(feature = "tls")]
tls: TlsArea,
}
impl TaskId {
fn new() -> Self {
static ID_COUNTER: AtomicU64 = AtomicU64::new(1);
Self(ID_COUNTER.fetch_add(1, Ordering::Relaxed))
}
pub const fn as_u64(&self) -> u64 {
self.0
}
}
impl From<u8> for TaskState {
#[inline]
fn from(state: u8) -> Self {
match state {
1 => Self::Running,
2 => Self::Ready,
3 => Self::Blocked,
4 => Self::Exited,
_ => unreachable!(),
}
}
}
unsafe impl Send for TaskInner {}
unsafe impl Sync for TaskInner {}
impl TaskInner {
pub fn new<F>(entry: F, name: String, stack_size: usize) -> Self
where
F: FnOnce() + Send + 'static,
{
let mut t = Self::new_common(TaskId::new(), name);
debug!("new task: {}", t.id_name());
let kstack = TaskStack::alloc(align_up_4k(stack_size));
#[cfg(feature = "tls")]
let tls = VirtAddr::from(t.tls.tls_ptr() as usize);
#[cfg(not(feature = "tls"))]
let tls = VirtAddr::from(0);
t.entry = Some(Box::into_raw(Box::new(entry)));
t.ctx_mut().init(task_entry as usize, kstack.top(), tls);
t.kstack = Some(kstack);
if t.name == "idle" {
t.is_idle = true;
}
t
}
pub const fn id(&self) -> TaskId {
self.id
}
pub fn name(&self) -> &str {
self.name.as_str()
}
pub fn id_name(&self) -> alloc::string::String {
alloc::format!("Task({}, {:?})", self.id.as_u64(), self.name)
}
pub fn join(&self) -> Option<i32> {
self.wait_for_exit
.wait_until(|| self.state() == TaskState::Exited);
Some(self.exit_code.load(Ordering::Acquire))
}
pub unsafe fn task_ext_ptr(&self) -> *mut u8 {
self.task_ext.as_ptr()
}
pub fn init_task_ext<T: Sized>(&mut self, data: T) -> Option<&T> {
if self.task_ext.is_empty() {
self.task_ext.write(data).map(|data| &*data)
} else {
None
}
}
#[inline]
pub const fn ctx_mut(&mut self) -> &mut TaskContext {
self.ctx.get_mut()
}
#[inline]
pub const fn kernel_stack_top(&self) -> Option<VirtAddr> {
match &self.kstack {
Some(s) => Some(s.top()),
None => None,
}
}
#[inline]
pub fn cpumask(&self) -> AxCpuMask {
*self.cpumask.lock()
}
#[inline]
pub fn set_cpumask(&self, cpumask: AxCpuMask) {
*self.cpumask.lock() = cpumask
}
}
impl TaskInner {
fn new_common(id: TaskId, name: String) -> Self {
Self {
id,
name,
is_idle: false,
is_init: false,
entry: None,
state: AtomicU8::new(TaskState::Ready as u8),
cpumask: SpinNoIrq::new(AxCpuMask::full()),
in_wait_queue: AtomicBool::new(false),
#[cfg(feature = "irq")]
timer_ticket_id: AtomicU64::new(0),
#[cfg(feature = "smp")]
on_cpu: AtomicBool::new(false),
#[cfg(feature = "preempt")]
need_resched: AtomicBool::new(false),
#[cfg(feature = "preempt")]
preempt_disable_count: AtomicUsize::new(0),
exit_code: AtomicI32::new(0),
wait_for_exit: WaitQueue::new(),
kstack: None,
ctx: UnsafeCell::new(TaskContext::new()),
task_ext: AxTaskExt::empty(),
#[cfg(feature = "tls")]
tls: TlsArea::alloc(),
}
}
pub(crate) fn new_init(name: String) -> Self {
let mut t = Self::new_common(TaskId::new(), name);
t.is_init = true;
#[cfg(feature = "smp")]
t.set_on_cpu(true);
if t.name == "idle" {
t.is_idle = true;
}
t
}
pub(crate) fn into_arc(self) -> AxTaskRef {
Arc::new(AxTask::new(self))
}
#[inline]
pub(crate) fn state(&self) -> TaskState {
self.state.load(Ordering::Acquire).into()
}
#[inline]
pub(crate) fn set_state(&self, state: TaskState) {
self.state.store(state as u8, Ordering::Release)
}
#[inline]
pub(crate) fn transition_state(&self, current_state: TaskState, new_state: TaskState) -> bool {
self.state
.compare_exchange(
current_state as u8,
new_state as u8,
Ordering::AcqRel,
Ordering::Acquire,
)
.is_ok()
}
#[inline]
pub(crate) fn is_running(&self) -> bool {
matches!(self.state(), TaskState::Running)
}
#[inline]
pub(crate) fn is_ready(&self) -> bool {
matches!(self.state(), TaskState::Ready)
}
#[inline]
pub(crate) const fn is_init(&self) -> bool {
self.is_init
}
#[inline]
pub(crate) const fn is_idle(&self) -> bool {
self.is_idle
}
#[inline]
pub(crate) fn in_wait_queue(&self) -> bool {
self.in_wait_queue.load(Ordering::Acquire)
}
#[inline]
pub(crate) fn set_in_wait_queue(&self, in_wait_queue: bool) {
self.in_wait_queue.store(in_wait_queue, Ordering::Release);
}
#[inline]
#[cfg(feature = "irq")]
pub(crate) fn timer_ticket(&self) -> u64 {
self.timer_ticket_id.load(Ordering::Acquire)
}
#[inline]
#[cfg(feature = "irq")]
pub(crate) fn set_timer_ticket(&self, timer_ticket_id: u64) {
assert!(timer_ticket_id != 0);
self.timer_ticket_id
.store(timer_ticket_id, Ordering::Release);
}
#[inline]
#[cfg(feature = "irq")]
pub(crate) fn timer_ticket_expired(&self) {
self.timer_ticket_id.store(0, Ordering::Release);
}
#[inline]
#[cfg(feature = "preempt")]
pub(crate) fn set_preempt_pending(&self, pending: bool) {
self.need_resched.store(pending, Ordering::Release)
}
#[inline]
#[cfg(feature = "preempt")]
pub(crate) fn can_preempt(&self, current_disable_count: usize) -> bool {
self.preempt_disable_count.load(Ordering::Acquire) == current_disable_count
}
#[inline]
#[cfg(feature = "preempt")]
pub(crate) fn disable_preempt(&self) {
self.preempt_disable_count.fetch_add(1, Ordering::Relaxed);
}
#[inline]
#[cfg(feature = "preempt")]
pub(crate) fn enable_preempt(&self, resched: bool) {
if self.preempt_disable_count.fetch_sub(1, Ordering::Relaxed) == 1 && resched {
Self::current_check_preempt_pending();
}
}
#[cfg(feature = "preempt")]
fn current_check_preempt_pending() {
use kernel_guard::NoPreemptIrqSave;
let curr = crate::current();
if curr.need_resched.load(Ordering::Acquire) && curr.can_preempt(0) {
let mut rq = crate::current_run_queue::<NoPreemptIrqSave>();
if curr.need_resched.load(Ordering::Acquire) {
rq.preempt_resched()
}
}
}
pub(crate) fn notify_exit(&self, exit_code: i32) {
self.exit_code.store(exit_code, Ordering::Release);
self.wait_for_exit.notify_all(false);
}
#[inline]
pub(crate) const unsafe fn ctx_mut_ptr(&self) -> *mut TaskContext {
self.ctx.get()
}
#[cfg(feature = "smp")]
#[inline]
pub(crate) fn on_cpu(&self) -> bool {
self.on_cpu.load(Ordering::Acquire)
}
#[cfg(feature = "smp")]
#[inline]
pub(crate) fn set_on_cpu(&self, on_cpu: bool) {
self.on_cpu.store(on_cpu, Ordering::Release)
}
}
impl fmt::Debug for TaskInner {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("TaskInner")
.field("id", &self.id)
.field("name", &self.name)
.field("state", &self.state())
.finish()
}
}
impl Drop for TaskInner {
fn drop(&mut self) {
debug!("task drop: {}", self.id_name());
}
}
struct TaskStack {
ptr: NonNull<u8>,
layout: Layout,
}
impl TaskStack {
pub fn alloc(size: usize) -> Self {
let layout = Layout::from_size_align(size, 16).unwrap();
Self {
ptr: NonNull::new(unsafe { alloc::alloc::alloc(layout) }).unwrap(),
layout,
}
}
pub const fn top(&self) -> VirtAddr {
unsafe { core::mem::transmute(self.ptr.as_ptr().add(self.layout.size())) }
}
}
impl Drop for TaskStack {
fn drop(&mut self) {
unsafe { alloc::alloc::dealloc(self.ptr.as_ptr(), self.layout) }
}
}
use core::mem::ManuallyDrop;
pub struct CurrentTask(ManuallyDrop<AxTaskRef>);
impl CurrentTask {
pub(crate) fn try_get() -> Option<Self> {
let ptr: *const super::AxTask = axhal::cpu::current_task_ptr();
if !ptr.is_null() {
Some(Self(unsafe { ManuallyDrop::new(AxTaskRef::from_raw(ptr)) }))
} else {
None
}
}
pub(crate) fn get() -> Self {
Self::try_get().expect("current task is uninitialized")
}
pub fn as_task_ref(&self) -> &AxTaskRef {
&self.0
}
pub(crate) fn clone(&self) -> AxTaskRef {
self.0.deref().clone()
}
pub(crate) fn ptr_eq(&self, other: &AxTaskRef) -> bool {
Arc::ptr_eq(&self.0, other)
}
pub(crate) unsafe fn init_current(init_task: AxTaskRef) {
assert!(init_task.is_init());
#[cfg(feature = "tls")]
axhal::arch::write_thread_pointer(init_task.tls.tls_ptr() as usize);
let ptr = Arc::into_raw(init_task);
axhal::cpu::set_current_task_ptr(ptr);
}
pub(crate) unsafe fn set_current(prev: Self, next: AxTaskRef) {
let Self(arc) = prev;
ManuallyDrop::into_inner(arc); let ptr = Arc::into_raw(next);
axhal::cpu::set_current_task_ptr(ptr);
}
}
impl Deref for CurrentTask {
type Target = TaskInner;
fn deref(&self) -> &Self::Target {
self.0.deref()
}
}
extern "C" fn task_entry() -> ! {
#[cfg(feature = "smp")]
unsafe {
crate::run_queue::clear_prev_task_on_cpu();
}
#[cfg(feature = "irq")]
axhal::arch::enable_irqs();
let task = crate::current();
if let Some(entry) = task.entry {
unsafe { Box::from_raw(entry)() };
}
crate::exit(0);
}